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OVERVIEW
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HTE: Hetereogeneous Treatment Effects= a reality … 

Characterizing patients responding better to treatment:
– A complex task & a strong trend in the industry.

Obviously, it goes beyond mere computational aspects.
– But: the computational aspects are important too

Plenty of methods proposed in recent literature. 
Is any method ‘best’… !? A deceivingly simple-looking Q. And the answer is … [wait-for-it].   



Most powerful method?
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RCTs are seldomly sized for Data-driven Subgroup Detection (DSD). 
Given this underpower … 

– … it does make sense to think about good methods… 

But: we will look at the plethora of recent methods, and see why it is 
non-trivial to arrive at a robust answer… 

Also, we will see that DSD isn’t what we typically mean with ‘Machine 
Learning’ (ML)... (but some similarities exist).

(A standard chapter on supervised learning won’t help you).



It has to be mentioned: subgroups are tricky! 
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Well-known issues when interpreting subgroups, even if pre-specified.
– High false positive risk, low power of interaction tests [4a]
– Biased estimate in best-looking selected subgroup. [3a], [18a]

Guidelines & papers warn for this – for good reasons. 
• E.g., not enough with inference, also biol. plausibility? Etc. [7a], [9a]

Other end of the spectrum:

– the scientific spirit – full usage of the data – ‘let it speak’
– heterogeneuos diseases (e.g., oncology, diabetes)

The Right Patient, The Right Treatment, The Right Time



Two major HTE frameworks:
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The modern literature can broadly be divided into 

ITE ITR

Individual Treatment Effect: 
mapping a treatment to patients
(=’find a subgroup’). 

Individual Treatment Rules: 
mapping a patient to a treatment
(=’find a treatment’).



ITE (Individ.Treat. Est): setting
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Parallel two-arm trial (Active vs Control).
y=endpoint, trt=randomisation, x=(x1, …, xp) baseline biomarkers, covariates.

Could be:
– Few baseline candidates? (say, 5?). 
– Many baseline candidates? (e.g., 100+).
– Strict requirements: Subg.size>m and subg.effect>δ (some pre-set values).

Already here, somewhat of a cross-road: 

”SUBGROUP DETECTION” (hence) can mean slightly different things: 
• identify key treatment-interactions (’narrowing it down’) 
• strict pre-defined scheme for defining a subgroup & estimating effect. 



Key feature: pre-specification & controlling size of search  
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• Past: unstructured ( ~ adhoc dreadging, unknown performance) 
– Low power with e.g., interaction testing
– Can’t easily detect multiple-biomarker signatures

• Now: structured ( ~ systematic, special case of model selection)
– Stronger for discovering multiple-biomarker signatures
– built-in complexity control + cross-validation.

Modern Subgroup Detection = special case of Model Selection.
(≠ data dreadging) [8a], [26b], [3a], [18a].

– I.e., pre-specified of entire search scheme/strategy - structured approach!
– Idea: Limiting search-space (in a trackable way).  
– In principle, allowing NULL assessments (weak t1e) – and reproducibility!



Two approaches to ITE:
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The modern approaches for ITE comes in two flavours:

• LOCAL: zoom in on sub-area in covariate space, ignoring the rest. 
– ”Give me a subgroup” (E.g., {x2>10 and smoker=yes}).

• GLOBAL: modelling y over the entire covariate space: δ(x) = E(Y(1)–Y(0)|x). 
– ”Give me a model for how Treat.Eff varies with x” 

I.e., Note the Causal Inference connection: 
– for each patient, we only can observe either Y(1) or Y(0)

Potential outcome on 
active (1), control (0)  

This ”is” a 
specific
patient

Can’t observe both
for a given patient!



The Modern Methods are often:
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Typically:
– TREE-based (CART-style, but with a twist), or 
– Regularized/penalized REGRESSION (’lasso’ style).

TREE-based: e.g.,

• VirtualTwin [11b] (L)
• SIDES [24b] (L)
• GUIDE [27b] (G)
• QUINT [10b] (G)
• IT [39b] (G)
• MOB [44b] (GLMtree) (G)
• STIMA [7b] (hybrid) (G)
• BATTING/AIM/PRIM [19b] (L)
• mCART [34b], (L)
• RFIT [37b], MOBFOREST [20b] (G)
• CFOREST [42b] (G)
• mBART [6b] (L), bartMachine [21b] (G)

REGRESSION-based: e.g.,

• Lasso & Ridge [15b], GLMnet [14b] (G)
• Boosting [30b] (G)
• ’FindIT’ (SVT+Lasso) [22b] (G)
• STIMA (hybrid) [7b] (G)



Tree-based ones  …. 
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For better or worse, 
correspond well to medical practice: 

The dichotomize biomarkers
Therefore, explicitly suggest subgroups
(at least, single trees; ensambles more tricky)

Typically ’off-the-shelf’: 
almost no data pre-processing

Might look misleadingly simple?

“Often it is still very hard to tell from a given 
tree structure whether interactions really 

exist and how variables interact with each 
other.” [39b].

TREE-based: e.g.,

• VirtualTwin [11b] (L)
• SIDES [24b] (L)
• GUIDE [27b] (G)
• QUINT [10b] (G)
• IT [39b] (G)
• MOB [44b] (GLMtree) (G)
• STIMA [7b] (hybrid) (G)
• BATTING/AIM/PRIM [19b] (L)
• mCART [34b], (L)
• RFIT [37b], MOBFOREST [20b] (G)
• CFOREST [42b] (G)
• mBART [6b] (L), bartMachine [21b] (G)



Regression-based ones … 
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The user must add the biomarker-treatment interactions as terms: 
(p>>n no issue if regularized/penalized regr)

Regression: seeks the most
’significant’ BIOM-TRT interactions

Renders a ranking of interactions. 

”But what is the subgroup?”

‘A natural question to ask at this point is, how should one define subgroups of patients who are likely to 
experience a beneficial treatment effect based on penalized regression models? One possible solution is to plot 
the estimated treatment contrasts against the covariates […] to identify reasonable cut-offs” [26b]

Less off-the-shelf (some user work) REGRESSION-based: e.g.,

• Lasso & Ridge [15b], GLMnet [14b] (G)
• Boosting [30b] (G)
• ’FindIT’ (SVT+Lasso) [22b] (G)
• STIMA (hybrid) [7b] (G)



Tree Crash Course (1)
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Toy example: 

Two variables, x1 and x2

Each observation: ’A’ or ’B’.

Can we fit a predictive
model, and predict the class
of a new observation?

Can we fit a predictive
model, and predict the class
of a new observation?



Tree Crash Course (2)
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Tree with 1 split

|x2< 0.4993

A B

Recursive Partitioning: seeking homogeneous ’boxes’



Tree Crash Course (3)
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Recursive Partitioning: seeking homogeneous ’boxes’



Tree Crash Course (4)
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Recursive Partitioning: seeking homogeneous ’boxes’



Tree Crash Course (5) (overfitted…)
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Recursive Partitioning: seeking homogeneous ’boxes’



Super-quick: Machine Learning is strong .. (often trees)

18

Logistic Regression:

GRAD. BOOST

SIMUL.

Non-linear
interaction
sits here



But General Mining isn’t what we are dealing with here:
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The previous example illustrated the general strength of modern tree-based 
algorithms (e.g., Gradient Boosting, Random Forest) …

… but was unrealistic and atypical: there was no treatment involved.  

KEY POINT: 

Supervised Learning (Machine Learning) 
– predicts y ~ x, ranks the x

Subgroup Detection: 
– seeks individual treat.contrasts ~ x 
– semi-supervised? Causal-inference element (i.e., incomplete data)



Can’t we just run ML anyway … ?
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Classical Supervised Learning (Machine Learning - ML) predicts y ~ x
– Gradient Boosting, Random Forest, Elastic Nets, etc 
– Support Vector Machines, Neural Nets, etc 

Of course, ML could be fitted as y ~ (x, trt) [i.e., trt as another column] but 
prognostic variables will then typically dominate!  

Why? - Because that’s what prognostic variables do: useful for predicting y!
(Easy to see via simulations – see later slides).

Subgroup Detection: surely has ML similarities, but has the counterfactual
component/ focus treatment contrasts

– Explains why so many novel methods (despite decades ML research!). 



(Prognostic vs Predictive terminology)
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Just a short recap:

– X is “prognostic” if it predicts the outcome Y
– X is “predictive” if it predicts differential treatment effect 



‘Classical Trees’ Vs ‘Subgroup-Detection-Trees’:
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Classical Trees: 
– Recursively splits the covariate space into rectangles 
– And fits a constant within each

Modern Subgroup-Detection-trees: 
– Recursively splits the covariate space into rectangles 
– And fits a model* within each

*Typically, fits some GLM(y ~ trt)  - splitting process different across different methods

I.e., fitting contrasts, ’heterogeneous style’ due to 
the different model fits across covariate space …

CART

GUIDE
QUINT
SIDES
MOB
IT, …



‘Subgroup-Detection-Trees’: how do they differ?
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If we look at e.g., the tree-based methods: how do they differ? 

“Sometimes seemingly different methods developed by different groups of 
authors turn out to be almost equivalent to each other”  [26b]

“it is important to realize that popular approaches to subgroup identification 
[…]come from such diverse fields of research as machine/statistical learning, 
multiple testing, and causal inference“. [26b]



‘Subgroup-Detection-Trees’: how do they differ? E.g.,
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• - QUINT always aims at dividing the covariate region into three regions: treatment is 
‘HARMFUL’, ‘NO DIFFERENCE’, or ‘BETTER’. (Qualitative interactions). 

• - SIDES: modelling a local part of the covariate region under certain side-conditions, 
and lets the operator pre-limit the complexity of the resulting subgroup. 

• - IT greedily seeks cut-offs c via likelihood ratio tests between a simpler model and a 
model with an indicator I(x>c) as term in the model. (Interactions)

• - GUIDE avoids seeking c directly; assesses globally most promising x to split on using 
lack-of-fit test, avoiding selection bias if covariates have differently no. unique values. 

• - MOB (GLM-tree) uses a instability test regarding each biomarker x, before attempting 
to split - arguably the most complex of all these methods (see [43b])

• - mCART: uses propensity scoring for ‘straightening up’ imbalance of covariates.



New Trend: Ensembles of trees – (again!)
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Classical Trees: 
– Known to have high variance
– Research established: ensembles more powerful. [15b]

e.g., RANDOM FOREST, GRADIENT BOOSTING [4b], [31b]

Modern Subgroup-Detection-trees: Similar recent ensemble-trend:
– CausalFOREST, RFIT, MOBFOREST, 
– BARTMACHINE, VTGUIDE
– Also, VIRTUAL TWIN based on ensemble-of-trees

Comes with a price: interpretability?
(Open reseach question: can improved model for δ(x) = E(Y1–Y0|x) be 
projected down to useful low-dimensional summeries (graphs)?



Let’s see some action: simulated toy example
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For illustration, sim RCT 1:1 rand, 
– n.per.arm = 1000, 
– Biomarkers: b1, … b4 ~ N(0,1), i.i.d.
– AGE ~ unif(15,90).

Prognostic: AGE, b3 and b4
Predictive:  b1 and b2  

## Highlights from R sim. function: 
## First generating X-over Trial, but then 
## subsampling to a parallell RCT […] 
progn <- 2 + 0.4*age + b3 + b4
delta.x <- fun.logistic(b2, 5) - fun.logistic(b1, 5)
D0$y <-progn
D1$y <-progn + delta.x
D0$true.delta <- delta.x
D1$true.delta <- delta.x
DD.xo <- data.frame(rbind(D0, D1))  
DD.xo$y <- DD.xo$y + rnorm(nrow(DD.xo), 0, Sd)
# each patient now factually & cfactually simulated, 
## further code then assigns a patient to only a single trt… 

������������	
��������������



Let’s see some action: simulated toy example [2]

27

Strictly speaking a non-linear biom~trt interaction (‘XOR’ style).

And not obvious ‘for the eye’ due to the impact of prognostic variables.

Let’s run some methods:
– ��
���������(pretending it is a standard ML problem)
– �����,  !�"�, ��#$�, & �%�
– &�'��()������& *	��'�(�+	


(We stress that these runs are only for illustrational purposes and we admit that it is not obvious how 
to set up the various tuning parameters in an entirely fair fashion; details omitted here).



Results on Toy Data [1]
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[…] Subgroup 2: 
b1 <= 0.32945 b2 > ‐1.22852
Treatment effect: 1.21 (95%CI: 0.2‐2.22) 
P‐value 0.0096 (unadj[…])

• SIDES gave a shortlist of qualifying subgroups,
most based on at least b1, all roughly relevant
(we didn’t impose any permutation‐based NULL adj).

(*) This is not a manual and for illustrational purposes it suffices to say that all methods have some tuning parameters to set. This makes it non-trivial when comparing methods. The above runs
are only inlcuded to reflect the kind of output the methods give, and give a flavour of how they picks up the signal in the data. (Beyond scope: t1e & bias assessments using NULL simulations)

(RF: models Y well, 
but VERY misleading)

QUINT. 

STIMA. 

SIDES:



Results on Toy Data [2]
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– RIGHT: Biomarkers & Age = splitting candidates

– BELOW: Only b1 & b2 = splitting candidates, 
– (cheating)

Take-Away Message: strongly prognostic 
biomarker AGE dominatres the model fit. 

’Pre-adjusting’ for AGE, b3, b4 in the 
base-GLM helps …

GLM-tree. 

GLM-tree (2). 



Results on Toy Data [3]
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�� 
�.������/���

Virtual Twin

Causal Forest. 



Some aspects to consider when comparing methods … 
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• For which types of endpoints can the method be applied? (continuous, 
binary, counts, censured).

• Does the method suggest subgroups, or does it merely seek interactions?

• Stringency/Complexity control? (E.g., re. subgroup definition).

• Not to underestimate: coding difficulties (wildly different output objects from R 
packages – and some methods doesn’t have R code ..)

Method A could outperform method B in some simulation setting? 
But A only applicable if Y continuous, whereas B can handle all endpoints?
Method A could outperform method B in some simulation setting? 
But A only applicable if Y continuous, whereas B can handle all endpoints?



Some literature comparisons:

32

In [5b] the following methods were compared: IT, SIDES, MOB, STIMA, L2-SVM (FindIt). 

In [19b] simulation comparisons were conducted regarding BATTING, AIM, AIM-r, PRIM and SIDES.

In [10b] many simulations are presented, but mostly regarding certain performance measures for QUINT (e.g., type-1-errors, 
recovery probabilities, tree complexities, split points, etc) under certain assumptions. They compared STIMA, IT and QUINT on a 
cancer trial. 

In [35b] eight simulation models, comparing ability to top-rank predictive biomarkers in the presence of prognostic; INFO+, VT, 
SIDES.

In [26b] the method L2-SVM (FindIt) is compared against several other regression-based methods (GLMNET, MOB, BART, 
Boosting, Bayesian GLM, Conditional Inference Trees).  

in [28b] simulation comparisons were presented for GUIDE, VT, QUINT, SIDES, MOB, and IT in terms of various metrics (such as 
selection bias) and estimation accuracy. 

Based on the evidence presented here, it is obvious that every method exhibits 
strengths and weaknesses. […] further research is needed to better 
understand the performance characteristics of these [… ]”  [1b]



An aspect that might need further some research*?
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Most papers deal with the problem schematically described as
y ~ x, trt and aiming to model δ(x) = E(Y1–Y0|x)

But not so much on known baseline covariate to adjust for? (y, or else).
y ~ yb, x, trt

(E.g., Y=hbA1C, yb=base.hbA1C, or Y=no.events, yb=prev.no.events, or yb= AgeGr).

• IGNORE Yb and run the black-box on y~x?

• Let Yb be another SPLITTING CANDIDATE i.e. as another x

(* We stress that simulation comparisons are generally highly demanding in the practice, and it is very 
understandable that there still are some scope for further investigations; work in progress). 

Problems!
Power drop, 
prognostic 
domination



Connection: prognostic / pre-adjustment of covariate
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Assume methods A and B are compared (via simulations):

Then you can have 

• A > B on setups (y, x, trt) – (no baseline y)
• B > A on setups (y, yb, x, trt) – (with baseline y present)

– Because B can adjust for it statistically (e.g., SIDES, GLMtree, GUIDE)
– Whereas A can’t – must attempt to split on it (e.g., VT, QUINT)



Conclusions:
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HTE/ITE: rapidly developing, complex area. A bit different from standard 
Machine Learning. 

Many recent fine methodological contributions. 

Not straightforward to assess performance characteristics. 

Still room for further research. (E.g., impact of adjust. for baseline-cov). 

[0%�1��"�2�%3�$��]

If interested, check out: Biopharmnet Subgroups repository [2b] 
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Quote
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• “Another shortcoming of these methods is that the accompanying software 
lacks instructions about how to use it to identify treatment-subgroup 
interactions. Some of these methods merely provide software code 
without a manual [… ] and some of them provide only general instructions 
that are not adapted to treatment-subgroup interactions (e.g., STIMA). As 
a solution, recently a new tree-based method […]” [9b]



Prognostic or predictive?
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Modern Approaches are design to focus in on the predictive
biomarkers and to avoid ‘being tricked’ by the prognostic variables.

Great improvement over classical ML. E.g., Virtual Twin scheme:
– Fits predictive models to active arm & control arm, 
– Then, predict each patient factually & counterfactually
– Hence, VT ‘knows’ patient’s responses to both treatments Y(1) & Y(0)

– Then explores driving biomarkers behind differences z=Y(1) - Y(0)

(Just consider the RF vs VirtualTwin in the previous toy example section !).

However, still some tendency to top-rank prognostic. (e.g., [35b], [36b], [37b]).
(probably largely unknown to what extent, across all methods).



Why could prognostic biomarkers appear predictive?
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Small-n, and “more can happen with a prognostic”:
RCT full population: bsl balance. 
Subgroup node: bsl can be imbalanced:

A split optimized to make a 
prognostic x2 look as ”bad as 
possible” across arms



Toy example with y and yb (and true subgroup b1>0.25)
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MOB (GLMtree)
when yb splitting candidate

MOB (GLMtree)
adjustment for yb

RCT n=500/arm, ”A1c” style, 
Dection run on bsl+week5



• Let                                         denote the expected response of a patient, as a 
function of biomarkers    and treatment assignment   .

– STEP 1: Fit a predictive model, and estimate each patient’s expected 
response and  to active (1) & control (0). 

– One is counterfactual!  
– Subgroup? Patients with large differences

– STEP 2: Explore if differences can be predicted by biomarkers? 
I.e., fit new model (tree). [4] used a CV-pruned CART tree 
to get to subgroup. (Subgroup = Union{high-response leaves}).

Foster et. al [4]: Random Forest =STEP 1. 
(But single RF model or 2 RF models? Both suggested).

VT: a crash course: (blue=highlights) 
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• SIDES [10] also recursive partitioning, but based on a suitable GLM model. 
More complexity control, e.g., max-depth L of subgroup (e.g., L=2). 

– All possible biomarker splits are considered, for all biomarkers 
(Low, High):                                and 

– Splitting criterion        used to assess each such candidates.  
– Optimal cut exist: 

– One biomarker & split must win; then recursive repeat.
– (Some other parameters; e.g., keep M most promising splits in each step).

– Stop search if too small size (or not good enough effect). 
– Final subgroup: only split once per biomarker.

SIDES: a crash course: (blue=highlights) 
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From []: Y binary. Biom1=prognostic, Biom2=predictive. 
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• Mixture case: 
real subgroups exist 
(based on biom2),  
biom1 is prognostic.



From []. Biom1=prognostic, Biom2=predictive.
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Additional aspect:

VT based on one
and two GBM 
models.

Tracking VIP and 
loss-of-effect. 



Confidentiality Notice 
This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove 
it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the 
contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, 
Cambridge, CB2 0AA, UK, T: +44(0)203 749 5000, www.astrazeneca.com

48


